

Bus Connects Route 2 Swords to City Centre – Ground Investigation

Client: National Transport Authority (NTA)

Client's Representative: Jacobs

Report No.: 20-0399A

Date: December 2021

Status: Final for Issue

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	5
2	SCOI	PE	5
3	DES	CRIPTION OF SITE	5
4	SITE	OPERATIONS	6
	4.1	Summary of site works	6
	4.2	Boreholes	6
	4.3	Standpipe installations	
	4.4	Trial Pits	7
	4.5	Slit trenches	7
	4.6	Surveying	8
	4.7	Groundwater monitoring	8
5	LAB	DRATORY WORK	8
	5.1	Geotechnical laboratory testing of soils	
	5.2	Geotechnical laboratory testing of rock	8
	5.3	Environmental laboratory testing of soils	
6	GRO	UND CONDITIONS	10
	6.1	General geology of the area	
	6.2	Ground types encountered during investigation of the site	10
	6.3	Groundwater	10
7	DEEI	EDENCES	11

APPENDICES

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Core photographs

Appendix D Trial pit logs

Appendix E Trial pit photographs

Appendix F Slit trench logs and sketches

Appendix G Slit trench photographs

Appendix H Geotechnical laboratory test results

Appendix I Environmental laboratory test results

Appendix J SPT hammer energy measurement report

Document Control Sheet

Report No.:		20-0399A						
Project Title:		Bus Connects Route 2 Swords to City Centre						
Client:		National Transport Authority (NTA)						
Client's Repres	entative:	Jacobs						
Revision:	A02	Status:	Final for Issue	Issue Date:	9 th December 2021			
Prepared by:		Reviewed by:		Approved by:				
HAL		Sea Ross. Jam O'lla						
Stuart Abraham MEng MIEI		Sean Ross BSc MSc MIEI		Darren O'Mahor BSc MSc MIEI Et	•			

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
$\overline{}$	Water strike: initial depth of strike.
T	Water strike: depth water rose to.
Abbreviations relatin	g to rock core – reference Clause 36.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Bus Connects Route 2 Swords to City Centre

1 **AUTHORITY**

On the instructions of Jacobs, ("the Client's Representative"), acting on the behalf of National Transport Authority (NTA) ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to inform the planning stage design and enable the design of Bus Connects Core Bus Corridors.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, slit trenches, soil and rock core sampling, environmental sampling, groundwater and ground gas monitoring, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on two sites on the N1 Swords Road in the Drumcondra region of north Dublin.

The northern site (716789,738253) is located at the junction of the N1 and Colins Avenue. The site consists of an area of disused ground, it is bound to the north by Colins Avenue and on the west by Swords Road. Whitehall GAA club is to the east and hospital and care home facilities to the south. The surrounding area is in residential use. The M50 Port Tunnel runs beneath the site.

The southern site (716090,736734) is located at the junction of the N1 with Millmount Avenue on the banks of the Tolka River. The site consists of a small area of parkland with mature trees, laid in grass. The site is surrounded by land in residential or light commercial use.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 22nd September and 28th October 2020, comprised:

- one light cable percussion borehole with rotary follow on
- two machine dug trial pits
- three slit trenches

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

One borehole (R2-CPRC02) was put down by a combination of light cable percussion boring and rotary follow-on drilling techniques with core recovery in bedrock. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/bedrock. Symmetrix cased full-hole drilling was used, with SPTs carried out at standard intervals as required. A further borehole (R2-CPRC01) was attempted twice however it met concrete obstructions at shallow depth and could not be progressed.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals throughout the overburden using the split spoon sampler (SPT $_{(s)}$) or solid cone attachment (SPT $_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in

Appendix J.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed in borehole R2-CPRC02

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Trial Pits

Two trial pits (R2-TP01 & R2-TP02) were excavated using a 3t tracked excavator fitted with a 600mm wide bucket, to depths of 1.05-2.10m.

Environmental samples were taken at depths of 0.5m & 1.0m in each trial pit.

Disturbed (bulk bag) samples were taken at standard depth intervals and at change of strata.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.5 Slit trenches

Three slit trenches (R2-SLT01. R2-SLT01A & R2-SLT02) were excavated by a combination of hand digging and mechanical excavation using a compact 3t tracked excavator fitted with a 300mm wide toothless bucket, to locate and identify buried services at the site.

Drawing of the trenches and the locations of services encountered during excavation are shown along with the slit trench logs in Appendix F, with photographs presented in Appendix G.

4.6 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

4.7 Groundwater monitoring

Following completion of site works, a groundwater monitoring round was conducted on several rounds. Ground water monitoring was carried out using a water interface probe.

The monitoring records are presented in Section 6.3.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **shear strength** (total stress): unconsolidated undrained triaxial tests
- **soil chemistry:** BRE Suite A

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix H.

5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with									
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load									
	strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60									
Uniaxial	ISRM Suggested Methods (1981) Suggested method for determining									
compression	deformability of rock materials in uniaxial compression, Part 2									
strength tests	and									
	ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods									
	for rock characterization, testing and monitoring, 2007									

The test results are presented in Appendix H.

5.3 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil and water samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried out on a number of samples according to Engineer's Ireland Suite E and Suite H including testing for a range of determinants:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- Cyanides
- Asbestos screen
- pH
- Waste acceptance criteria (WAC) testing.

Groundwater testing was carried out on a number of samples according to Engineer's Ireland Suite F and additional testing which included testing for a range of determinants:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- pH

Results of environmental laboratory testing are presented in Appendix I.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the northern section of the site (716789,738253) comprise Glacial Till derived of limestones deposits at the southern section of the site (716090,736734) comprise Alluvium. These deposits are underlain by dark limestone and shale of the Lucan Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 100mm thickness in borehole R2-CPRC02 and slit trenches R2-SLT01 & R2-SLT01A.
- **Made Ground (fill):** typically reworked sandy gravelly cohesive fill with fragments of concrete and brick extending to a maximum depth of 3.5m.
- **Glacial Till:** sandy gravelly clay, typically stiff, becoming very stiff with increasing depth was encountered at 1.20m on R2-TP02 and at depth ranging 3.50m 13.05m within R2-CPRC02.
- **Bedrock (Limestone):** Rockhead was encountered at depth 13.05mbgl in R2-CPRC02 extending to its base at 20.00m

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during percussion boring through soil as water strikes at 3.3m & 5.0m in borehole R2-CPRC02.

It should be noted that the casing used in supporting the borehole walls during drilling may have sealed out additional groundwater strikes and the possibility of encountering groundwater at other depths during excavation works should not be ruled out.

It should also be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Groundwater was not noted during excavation of any of the trial pits or slit trenches.

Subsequent groundwater monitoring of the standpipe installation recorded water levels as shown in Table 1.

Table 1: Groundwater monitoring

Date	Water level (mbgl)
Date	R2-CPRC02
19/11/2020	2.93
19/01/2021	2.61
12/02/2021	2.72
23/04/2021	2.88
02/06/2021	2.83
22/06/2021	2.96
16/07/2021	2.81
20/08/2021	2.81
24/09/2021	2.78

Continued monitoring of the installed standpipe will give an indication of the seasonal variation in groundwater level which should be factored into design considerations.

7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

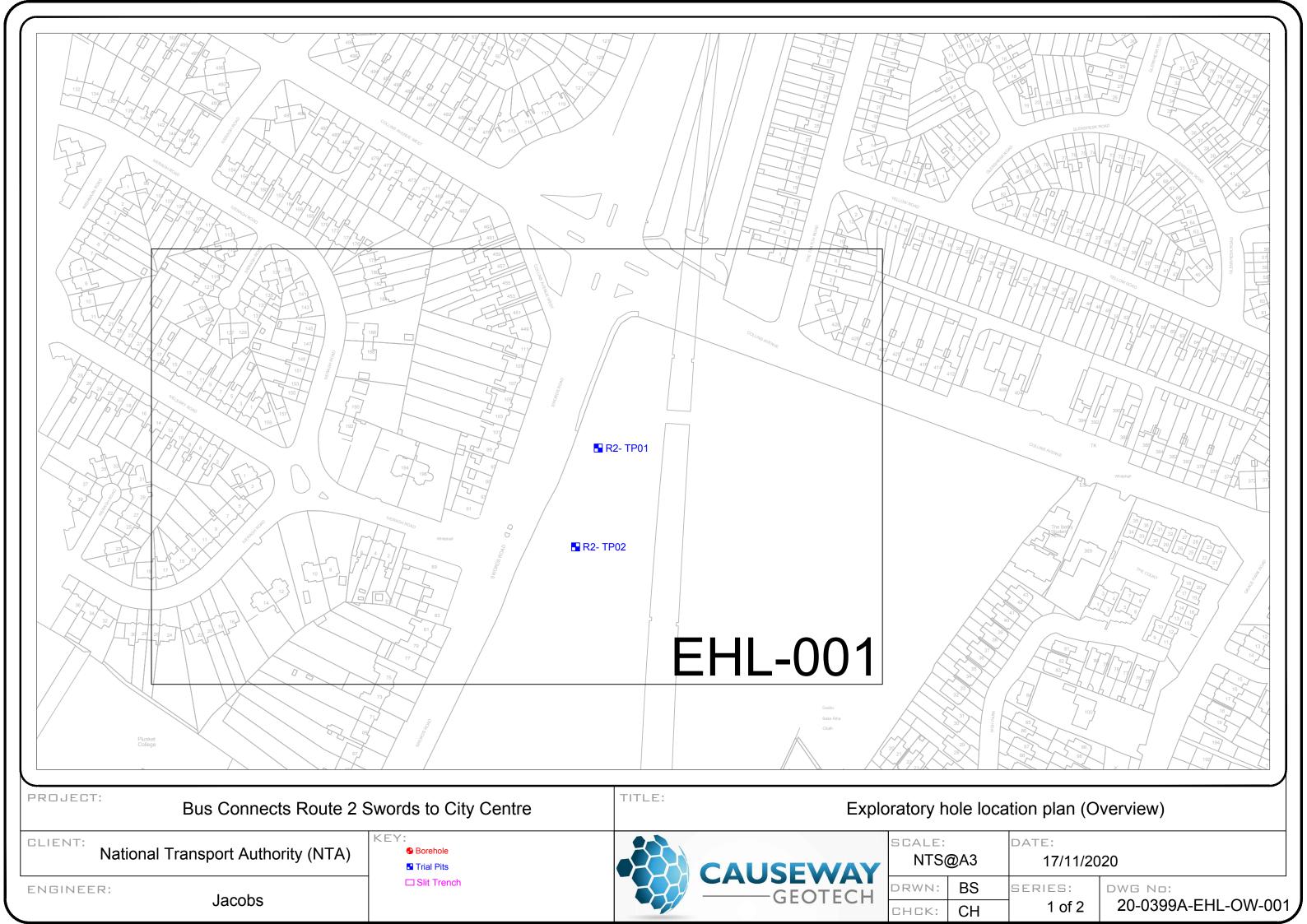
IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

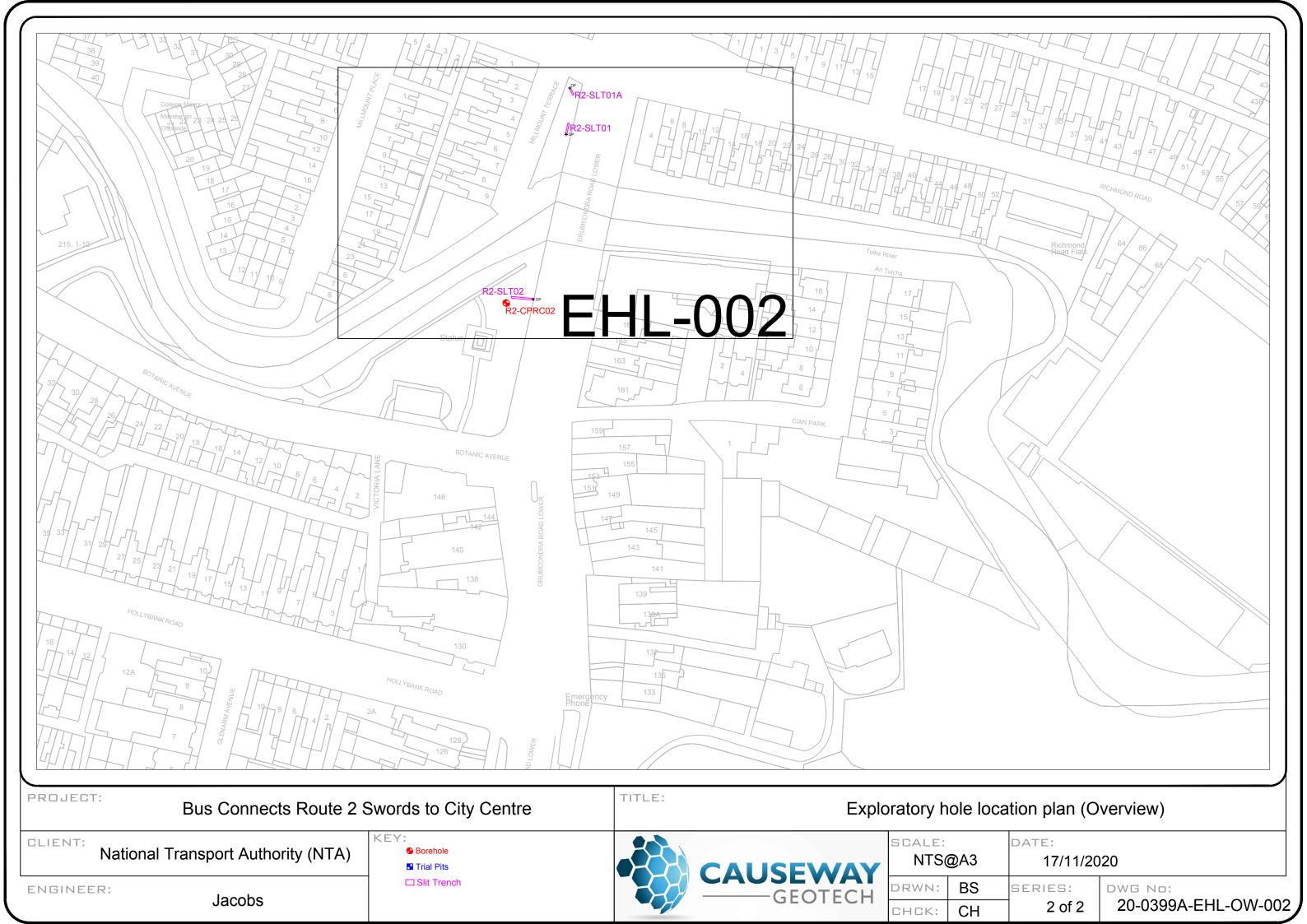
BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

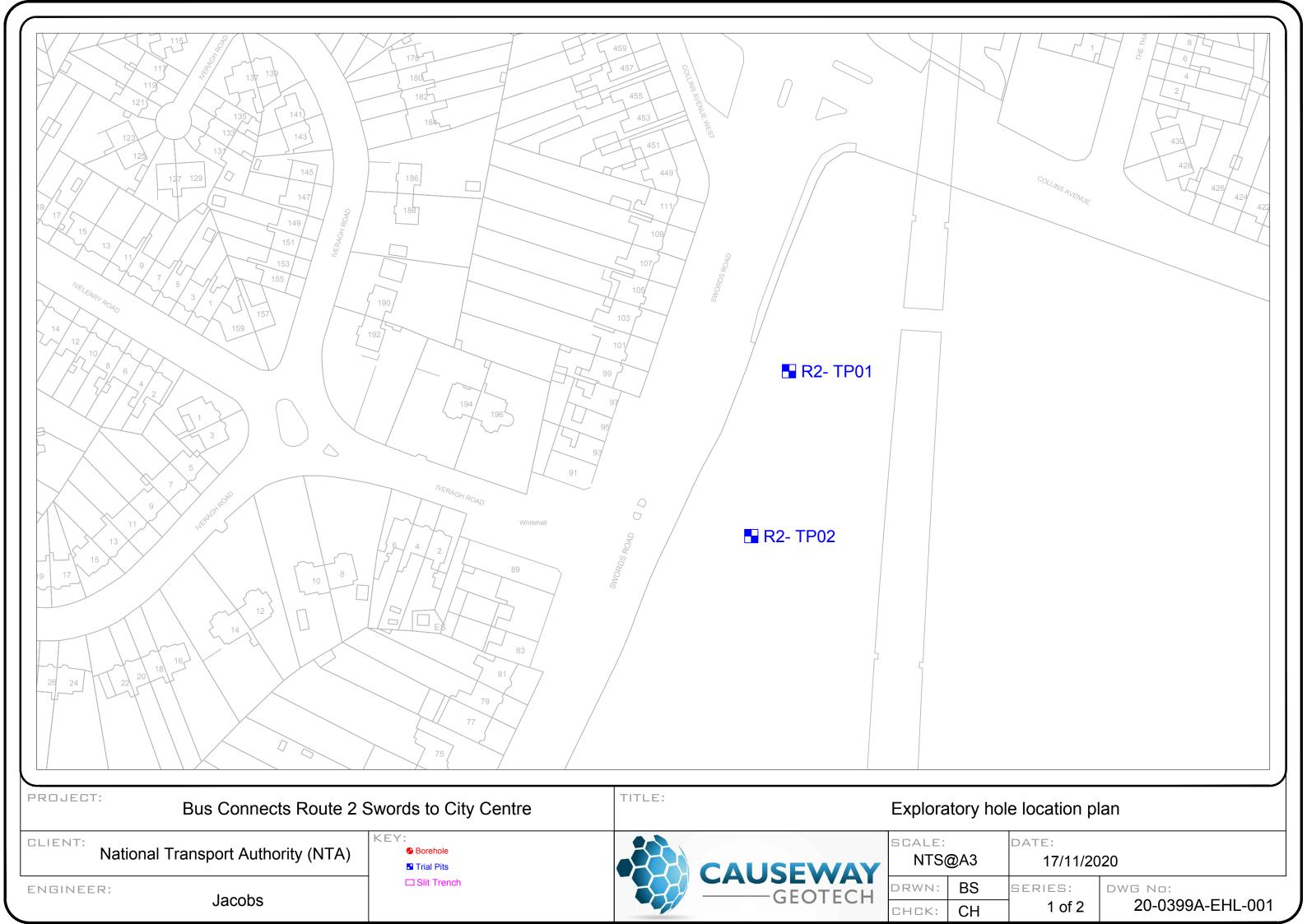
BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

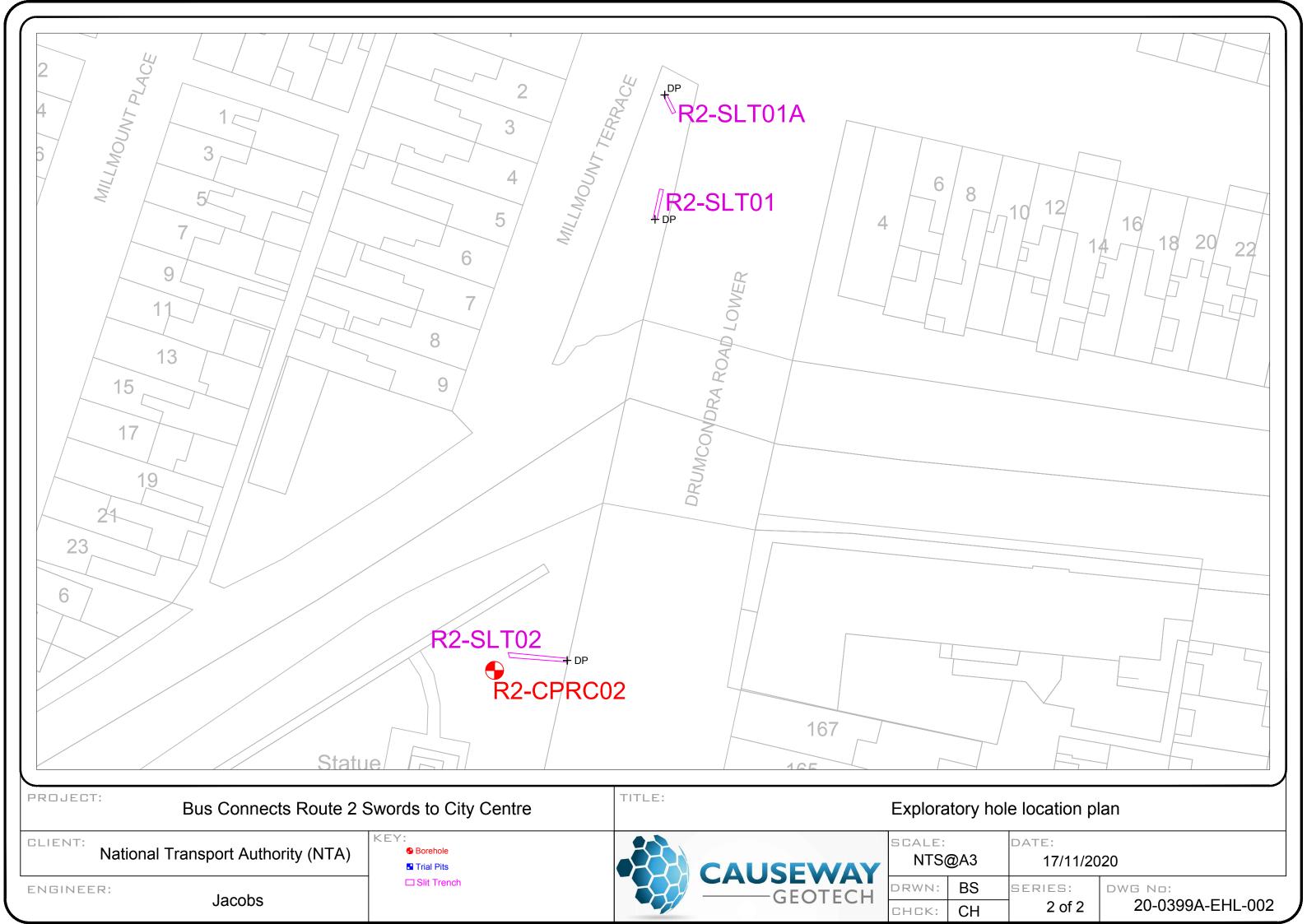
BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.


BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.


BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.




APPENDIX A EXPLORATORY HOLE LOCATION PLAN

APPENDIX B
BOREHOLE LOGS

		CAUS	E	W DTE	A	Y			•	ct No. 399A	Project Client: Client's			e 2 Swords to Authority (N7	•	tre		orehol 2-CPR	
Metho Cable Percu		Plant U Dando			Top		Base 6.0		Coord	linates	Final Depth: 20.00 m Start Date: 26/10/2020 Driller: BM+GT							heet 1 Scale: 1	
Rotary Dri Rotary Co	_	Beretta Beretta			6.0 6.5		6.5 20.			00.75 E 34.13 N	Elevatio	n: 7.48 mOD	End Date:	28/10/2020	0/2020 Logger: GH+NP			FINA	۱L
Depth (m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend	,	Des	cription	ļ.		Water	Backfil	I
0.50 0.50 1.00 1.00 1.20 1.20 - 1.65 2.00 2.00 2.00 - 2.45 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00 4.00 4.00 4.00 4.00 - 4.45	B6 D8 ES7 SPT (S) B9 D11 ES ES10 SPT (S) B12 D13 ES14	N=13 (3,4/3, 0643 N=14 (5,5/4, 0643 N=9 (2,3/2,2 0643 Strike at 3.30 N=30 (10,12, SN = 0643	3,3,4 ,2,3))m /10,8	Ham Hamn	mer :	SN = N =	1.50	Dry Dry	7.38 3.98 3.48	3.50		TOPSOIL MADE GROUND: Fir CLAY. Sand is fine to to coarse of mixed I Firm brown slightly is subangular to sub Very stiff brown slig Gravel is subangula lithologies.	sandy gravelly prounded fine	el is subangular y CLAY. Sand is fi to coarse of mix	ine to coarso	e. Gravel	¥		1.0 — 1.5 — 2.0 — 2.5 — 3.5 — 4.0 — 4.5 —
5.50 6.00 6.00 - 6.45 6.50	D15	N=47 (6,7/9, SN = 0643	Om	17) Ha	ammo		4.50		1.48 0.98	6.50		Very stiff grey sandy Very stiff greyish broand is fine to coars lithologies including	own becoming	g grey slightly sa Bangular fine to	andy gravelly		_		5.5
8.00 8.00 8.00 - 8.29	C15 SPT(S) N (14,20/: 140mm SN = 02	50 for) Hammer	97	SCR	RQD	NI	6.50			(4.00)									7.5
Struck at (m) Ca		Strikes	Rose	e to (m	1) F:	rom (elling To (r	Details		Remarks	nspection pit excavate	ad to 1 20m						
3.30 5.00 Casing De		20 Water	Add	3.20									eu to 1.20m.	ı	lock Unit	lote d			
							Barr K6L	ei	Flush Polyr			on Reason I at scheduled depth.			17/12/2	2020	W	A	GS

CAUSEWAY GEOTECH Method Plant Used Top (m) Base (m) Cable Percussion Rotary Drilling Beretta T44 6.00 6.50						00	Project No. 20-0399A Client: Client's Rep: Date: Coordinates 716090.75 E Project Name: Bus Connects Route 2 Swords National Transport Authority Start Date: 26/10/20			Authority (N1		- 1	Borehole ID R2-CPRC02 Sheet 2 of 3 Scale: 1:50			
Rotary Co	-	ta T44	1	6.	50	20.	20.00 736734.13		4.13 N	Elevation: 7.48 mOD End Date: 28/10/202			28/10/2020	Logger: GH-		FINAL
Depth (m)	Samples / Field Record	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			cription			Backfill
9.50 9.50 9.50 - 9.67	C15 SPT(S) N=50 (42 for 140mm/50 for 30mm) Hammer SN = 209					6.50		-3.02	10.50		Very stiff greyish bro Sand is fine to coars lithologies including	se. Gravel is su g sandstone ar	bangular fine to nd limestone.	o coarse of mixe		9.5 -
11.00 11.00 11.00 - 11.27	C SPT(S) N=50 (14,20/50 for 120mm) Hammer SN = 0209	100			NI	6.50			(2.00)		coarse. Gravel is sut including sandstone	pangular fine t	o coarse of vari			11.0
12.50 12.50 12.50 - 12.85	C15 SPT(S) N=50				NI	6.50		-5.02	12.50		Very stiff grey sandy subangular fine to c			coarse. Gravel is	;	12.0 —
	(18,20/50 for 200mm) Hammer SN = 0209	100	63	8				-5.57	13.05		Medium strong thin spaced beds of wea slightly reduced strodeposits. Discontinuities; 1. 5 to 15 degree be	ik dark grey M ength, closer f	UDSTONE. Parti racture spacing	ally weathered: with dark grey c	lay	13.0
14.00 14.00 - 14.20 14.90	SPT(S) N=50 (25 for 40mm/50 for 160mm) Hammer SN = 0209		100	43	. 14	6.50		-7.42	14.90		planar and slightly u fracture surfaces. 2. At 13.25m to 13.70 to 90 degree joir joint surfaces.	75m, 13.50m t	to 14.25m and 1		n:	14.0 —
15.40 15.50	С							,2			Medium strong (loc with widely spaced weathered: slightly with dark grey clay Discontinuities: 1. 5 to 15 degree be planar and slightly to on fracture surfaces 2. At 16.20m to 16.4	beds of weak reduced stren deposits. edding fracture undulating, sm	dark grey MUD. gth, slightly closes, es, closely spaces	STONE. Partially ser fracture spac ed (15/135/775), ny grey clay depo	osits	15.0 - 15.5 -
16.55 - 16.80 17.00	С	100	100	75	6				(5.10)		2. At 16.20m to 16.4 with grey clay depo 15.55m to 15.90m: 85 to			idulating, smoot	n	16.5 <i>-</i>
17.10	С	100	100	75												17.5 -
18.20	С															18.0
18.50		TOP	SCR	Pop	FI				=							18.5
	Water Strikes	ICR	JUK	ועעט	- 11	Chis	elling I	Details		Remarks						
3.30 5.00 Casing De To (m) Dia	stails Wate am (mm) From (mi	r Add	3.20	m) Fi	rom (To (m				nspection pit excavate	ed to 1.20m.				
6.50	200			(Barr K6L	el	Flush Polyr			on Reason at scheduled depth.			Last Updated 17/12/2020		\\AGS

Method Plant Used Top (m) Base (m) Cable Percussion Dando 2000 0.00 6.00 Rotary Drilling Beretta T44 6.00 6.50 Rotary Coring Beretta T44 6.50 20.00							399A dinates	Project Name: Bus Connects Route 2 Swords to City Centre Client: National Transport Authority (NTA) Client's Rep: Jacobs Final Depth: 20.00 m Start Date: 26/10/2020 Driller: BM+G	Scale: 1:50		
Rotary Coring	Beretta T	44	6.50				34.13 N	Elevation: 7.48 mOD End Date: 28/10/2020 Logger: GH+N		╝	
Depth (m) Sample 19.10 - 19.85 C		OO 100		FI Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend Description Medium strong (locally weak) medium bedded dark grey LIMESTONI with widely spaced beds of weak dark grey MUDSTONE. Partially weathered: slightly reduced strength, slightly closer fracture spacing with dark grey clay deposits. Discontinuities: 1. 5 to 15 degree bedding fractures, closely spaced (15/135/775), planar and slightly undulating, smooth with patchy grey clay deposit on fracture surfaces.	19.	-	
Wate Struck at (m) Casing to (r 3.30 5.00	r Strikes n) Time (min) Ro 20 Water Ac	3.20			selling To (i	-12.52 g Details m) Tim		emarks and dug inspection pit excavated to 1.20m.	20. 21. 21. 22. 23. 24. 24. 25. 26. 26. 27. 27.	.5 .0	
			Co	ore Bar	rel	Flush Polyi		ermination Reason Last Updated erminated at scheduled depth. 17/12/2020	\\AG	S	

APPENDIX C CORE PHOTOGRAPHS

R2-CPRC02 Box 1 6.50-8.00m

R2-CPRC02 Box 2 8.00-9.50m

R2-CPRC02 Box 3 9.50-11.00m

R2-CPRC02 Box 4 11.00-12.50m

R2-CPRC02 Box 5 12.50-14.00m

R2-CPRC02 Box 6 14.00-15.50m

R2-CPRC02 Box 7 15.50-17.00m

R2-CPRC02 Box 8 17.00-18.50m

R2-CPRC02 Box 9 18.50-20.00m

APPENDIX D
TRIAL PIT LOGS

20			Proj	ect No.	Project	Trial Pit ID				
(A)	CALIS	SEWAY	20-	0399A	Bus Co	nnects Route 2 Swords to City Centre				
		SEWAY GEOTECH	Coor	dinates	Client:			F	R2-TP01	
			7167	87.57 E	1	al Transport Authority (NTA)				
Method:				67.57 E 53.75 N		s Representative:		Sł	neet 1 of 1	
Trial Pitting					Jacobs		Logger:	S	cale: 1:25	
Plant:				vation	Date:			FINAL		
3T Tracked Exca				9 mOD	22/09/2020 RS					
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
0.50 0.50 0.50 0.50 0.50 0.50 0.50	Tests ES ES ES1 B3 ES ES ES2	HVP=112, HVR=26 HVP=124, HVR=55 HVP=130, HVR=14 HVP=157, HVR=15	43.19 42.94	0.80	Legend	MADE GROUND: Stiff brown slightly sandy gravelly gravel sized pieces of wood. Sand is fine to coarse. If the to coarse of mixed lithologies. MADE GROUND: Dark grey very sandy silty subangung GRAVEL of limestone with low cobble content. Sand (Diesel odour present) End of trial pit at 1.05m	Gravel is subangular	Water	1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	
				-						
Water	Strikes		Rem	arks:						
Struck at (m)	Remarks	Depth: 1.05		roundwate	r encoun	tered.				
	, carks	Width: 0.60								
		Length: 2.50								
		Stability:	Termination Reason: Last Updated					d		
		Stable		inated on o		17/12/2020	N AGS			

200			Proj	ect No.	Project	Т	rial Pit ID				
	CALIS	SEWAY	20-	0399A	Bus Co	nnects Route 2 Swords to City Centre					
		SEWAY GEOTECH	Coor	dinates	Client:			F	R2-TP02		
			7167	75.70 E	1	al Transport Authority (NTA)					
Method:				01.89 N	Client's	Sł	neet 1 of 1				
Trial Pitting					Jacobs						
Plant:				vation	Date:		Logger:		FINAL		
3T Tracked Exca	avator		43.52	1 mOD	22/09/	2020	RS		FINAL		
	Sample /	Field Records	Level		Legend	Description		Nater			
0.50 0.50 0.50 0.50 0.50 1.00	B2 E5 E51 B4 E53	HVP=201, HVR=26 HVP=201, HVR=32 HVP=201, HVR=46	42.60 42.30	Depth (m)	Legend The second seco	MADE GROUND: Very stiff brown slightly sandy slig cobble sized pieces of red brick. Sand is fine to coar subangular fine to coarse of mixed lithologies. MADE GROUND: Brownish grey very sandy very silt GRAVEL of mixed lithologies with cobble sized piece brick. Sand is fine to coarse. Very stiff dark grey slightly sandy slightly gravelly Cl coarse. Gravel is subangular fine to medium of mixed predominantly limestone.	y fine to coarse is of concrete and	Water Water	1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —		
				<u> </u>					4		
				<u> </u>					4		
Water	Strikes	David 0.10	Rem	arks:	1	ı					
Struck at (m)	Remarks	Depth: 2.10		roundwate	r encoun	itered.			į		
//		Width: 0.60									
		Length: 2.00									
		Stability:	Termination Reason: Last Updated								
		Stable		inated on			17/12/2020		AGS		

APPENDIX E TRIAL PIT PHOTOGRAPHS

R2-TP01

R2-TP01

R2-TP01

R2-TP01

R2-TP01

R2-TP02

R2-TP02

R2-TP02

R2-TP02

APPENDIX F SLIT TRENCH LOGS & SKETCHES

200			Proj	ect No.	lo. Project Name:							
RS C	CALIS	EWAY	20-0	0399A	Bus Co	nnects Route 2 Swords to City Centre						
+		EOTECH	Coor	dinates	Client:		F	2-SLT01				
	G		7161	10 02 5	1	National Transport Authority (NTA) Client's Representative:						
Method:			726700 90 N		Client's	SI	neet 1 of 1					
Slit Trenching			/36/90.80 N		Jacobs	S	cale: 1:25					
Plant:			Elev	vation	Date:		Logger:		CINIAI			
3T Tracked Excavator			7.63	3 mOD	15/10/	2020	GH		FINAL			
Depth (m)	Sample /	Field Records	Level (mOD)	Depth	Legend	Description		Water				
(111)	iests					TOPSOIL		>				
1.00	## Tests ## B3 ## ES1 ## B4 ## ES2		7.52 5.52 4.92 4.53	(m) - 0.10		MADE GROUND: Firm brown slightly sandy medium cobble and low boulder content, fragment concrete and red brick. Sand is fine to coarse. Gravicoarse of mixed lithologies. Cobbles and boulders a lithologies. MADE GROUND: Firm brown slightly sandy slightly medium cobble content. Sand is fine to coarse. Gravicoarse of mixed lithologies. Cobbles are rounded to coarse of mixed lithologies. Cobbles are rounded in the coarse of mixed lithologies. Cobbles are subangular fine to coarse of mixed lithologies. Coblimized lithologies. End of trial pit at 3.10m	gravelly CLAY with vel is subangular fine to subangular of mixed gravelly CLAY with vel is subangular fine to finised of mixed lithologies.		1.5 —			
									_			
				<u>-</u>					4.5 —			
				-					-			
				-					-			
	C: "		Dem	arke:								
	Strikes	Depth: 3.10	Rema No gr	arks: roundwate:	r encoun	tered						
Struck at (m)	Remarks	Width: 0.55	INO BI	Junuwate	. Cricouli	co.ca.						
		Length: 3.75										
		Stability:	Town	ination Re	30000		Last Updated					
									۸۸۵			
	Stable Terminated a		inated at so	cheduled	l depth.	17/12/2020		AGS				

JOB NUMBER: JOB NAME: LOCATION: 20-0399A **Bus Connects** R2 - ST01 CREW: PLANT & EQUIPMENT CLIENT: CLIENTS REPRESENTATIVE: 3 Tonne Excavator & Hand Tools GH TRENCH: (SECTION & PLAN) TRENCH - ORIENTATION N 0° 012° _{90°}E 225 SW 180° S TRENCH ORIENTATED: 012° FROM NORTH Scanner reading possible water COORDINATES: DATUM WALL EASTING: - 716111.148 NORTHING: - 7367790.780 1750 ELEVATION: - 7.573 3750 Type of Service: Depth to Top of Service (m) Distance to Centre of Service (m) Diameter (in mm) TRENCH LENGTH (m): 3.75 **Details/Comments** No: TRENCH DEPTH (m): 3.1 \square 01 127 0.60 0.60 <u>127mm Green Duct Unknown</u> <u>Jnknown</u> TRENCH WIDTH (m): 02 0.55 127 0.50 0.95 Jnknown 127mm Red Duct Unknown 03 STABILITY: STABLE 04 05 GROUNDWATER: None 06 07 NTS@A3 SCALE: 80 09 DRAWN: BS 10 СН DATE EXCAVATED: 15-10-2020 11 12 13 14 15

			Proj	ect No.	Project Name:					
	CALIS	EWAY	20-0	0399A	Bus Co	nnects Route 2 Swords to City Centre				
$H \rightarrow H$	CAUS	EOTECH	Coor	dinates	Client:			R	2-SLT01A	
		BLOTECTI	7161	12.14 E	1	al Transport Authority (NTA)				
Method:						Representative:		Sł	neet 1 of 1	
Slit Trenching			/308	06.44 N	Jacobs			S	cale: 1:25	
Plant:				vation	Date:		Logger:		FINAL	
3T Tracked Exca				5 mOD	15/10/	15/10/2020 GH				
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
()			(-		TOPSOIL				
			6.96	0.20						
			6.86	0.30		MADE GROUND: Grey slightly sandy angular fine to limestone. Sand is fine to coarse. Cloth layer under			_	
				-		MADE GROUND: Firm greyish brown slightly sandy with medium cobble content, pieces of plastic, red			-	
	B3 ES1			-		is fine to coarse. Gravel is subangular fine to coarse			0.5 —	
0.50				Ē		Cobbles are angular of mixed lithologies.				
				-					_	
				- -					-	
	B4			-					1.0	
1.00	ES2			-					-	
				-					 	
				-					_	
			5.66	1.50		End of trial pit at 1.50m			1.5 —	
				_					-	
				- -						
				- -					2.0 ——	
				-					-	
				-					-	
				- -					1	
				-					2.5 —	
				-					_	
									-	
				-					-	
									3.0	
				-					_	
									-	
				- -					-	
									3.5 —	
				-						
				<u> </u>					-	
				-					-	
				-					-	
				-					4.0	
				-					-	
				-					-	
				-					-	
				-					4.5 —	
				-]	
				<u> </u>					-	
				<u>-</u>					-	
		i		<u> </u>						
Water		Depth: 1.50	Rema No gr	arks: roundwate	r encoun	tered				
Struck at (m)	Remarks	Width: 0.55	I NO BI	. Januwale	. cheouli					
		Length: 2.70								
		Stability:	Term	ination Re	ason:		Last Updated			
		Stable	ESB s	ervices exp	posed.		17/12/2020		AGS	

JOB NUMBER:	JOB NUMBER: 20-0399A JOB NAME: Bus Connects								
CLIENT:		Excavator & Hand Tools							
	TRENCH: (SECTION & PLAN) Drumcondra Shop Main Drumcondra Road NW 270 W270 W270 TRENCH - ORIENTATION TRENCH ORIENTATION TRENCH ORIENTATED: 154" FROM NORTH COORDINATES: DATUM WALLL EASTING: - 716/12.133								
_		_		2700		NORTH	HING: - 736806.439 TION: - 7.160		
No: Type Servi	of Diameter ce: (in mm)	Depth to Top of Service (m)	Distance to Centre of Service (m)		Details/Comments		CH LENGTH (m): 2.70 CH DEPTH (m): 1.50		
01 ESB 02 ESB 03 04 05	300	1.40		300mm Concrete ESB Slab 300mm Concrete ESB Slab		TREN	CH WIDTH (m): 0.55		
06 07 08 09						SCAL DRAV	E: NTS@A3 /N: BS		
10 11 12 13 14 15						DATE	EXCAVATED: 15-10-200 Charried completifies SynCompany Distribuged flow. Was IndistriCollisation Syntochromosoftens disclore 1000 Casessey, Seeben, Colory, jugge		

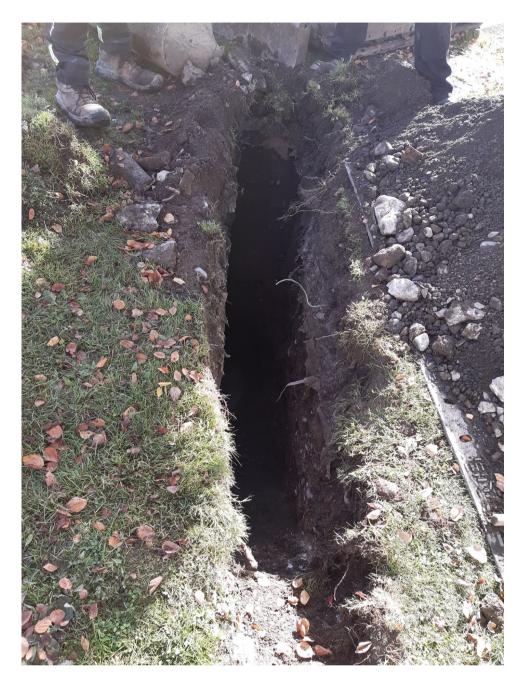
20			Proj	ect No.	Project	Name:		Trial Pit ID		
(A)	CALIS	EWAY	20-	0399A	Bus Co	nnects Route 2 Swords to City Centre				
+		EWAY GEOTECH	Coor	dinates	Client:			R	2-SLT02	
				99.87 E		al Transport Authority (NTA)				
Method:						Representative:		Sh	eet 1 of 1	
Slit Trenching					Jacobs			Scale: 1:25		
Plant:			Ele	vation	Date:		Logger:		FINIAL	
3T Tracked Exca	avator		7.42	2 mOD	29/09/	2020	RS		FINAL	
Depth	Sample /	Field Records	Level	Depth	Legend	Description	•	Water		
(m)	Tests		(mOD)	(m)		MADE GROUND: Stiff greyish brown slightly sandy g	ravelly CLAY with	>		
				-		cobble sized pieces of concrete and red brick. Sand	is fine to coarse.		=	
				-		Gravel is subrounded fine to coarse of mixed litholo	gies.		-	
				Ē]	
0.50	ES1			-					0.5	
				-					4	
				-					-	
				}					4	
				<u> </u>						
1.00	ES2			F					1.0	
				<u> </u>						
				-					_	
				E					1.5 —	
				<u> </u>					-	
				-					=	
				-					-	
									2.0 —	
				-					_	
			5.26	2.15	*******	End of trial pit at 2.15m			-	
				Ē					-	
				-					-	
				-					2.5	
				[
				-					_	
				F					-	
				-					3.0	
				-					-	
				-					-	
				[
				-					3.5 —	
				-					4	
									-	
				ļ					Ⅎ	
				-						
									4.0	
				ļ						
				-					_	
									4	
				-					4.5 —	
				<u> </u>					Ⅎ	
				<u> </u>						
				-						
Water	Strikes	David 0.15	Rem	arks:	1			1		
Struck at (m)	Remarks	Depth: 2.15	No g	roundwate	r encoun	tered.				
		Width: 0.35								
		Length: 7.00								
		Stability:	Term	ination Re	ason:		Last Updated			
	Stable		ble ESB services exposed. 17/12/2020						AGS	

JOB NUMBER	20-0399A	JOB NAME:		Bus Conr	ects		LOCATION: R02-SLT02
CLIENT:		CLIENTS REPR	RESENTATIVE:		CREW:	PLANT & EQUIPMENT 3 Tonn	e Excavator & Hand Tools
TRENCH: (SECTION & P	Datum		Boulder 2 2 700			ZI W ₂	NW 315° 45° 135° SE 180° S NCH ORIENTATED : 275° FROM NORTH ORDINATES: DATUM WALL TING: - 716099.867 RTHING: - 736735.425 VATION: - 7.412
	pe of Diameter rvice: (in mm)	Depth to Top of Service (m)	Distance to Centre of Service (m)		Details/Comments		NCH LENGTH (m): 7.00 :NCH DEPTH (m): 2.15
01 ESB	230	2.15		230mm ESB Slab			NCH WIDTH (m): 0.35
E3D	230	2.15		230mm ESB Slab	nown		
03 Unknown 04 Unknown	125 100	1.20 1.20	5.39 5.57	125mm Red PVC Duct Unk 100mm Grey PVC Duct Unl		STA	BILITY: STABLE
05	100	1.20	0.01	TOOMINI GICY I VO BUOL OIN	(III)	GRO	DUNDWATER: None
06							
07						90	ALE: NTS@A3
08							
10							AWN: BS ECKED: CH
11							TE EXCAVATED: 29/09/2020
12							
13							
14							C Ukwerhold complete SyncCompany Sold Project Files - Main Felder CAS Standard Synchold Presentation Strates USEC Counterey, Control, Color, paging
15							
						I	

APPENDIX G SLIT TRENCH PHOTOGRAPHS

R2-SLT01

R2-SLT01


R2-SLT01

R2-SLT01

R2-SLT01A

R2-SLT01A

R2-SLT01A

R2-SLT02

R2-SLT02

R2-SLT02

R2-SLT02

R2-SLT02

R2-SLT02

APPENDIX H GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 3 Balbriggan Business Park, Balbriggan Co Dublin, Ireland, K32 EH36 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

23 November 2020

Project Name:	Bus Connects - Route 2 - Swords to City Centre					
Project No.:	20-0399A					
Client: National Transport Authority (NTA)						
Engineer:	AECOM					

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Stephen Watson

Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Project Name: Bus Connects - Route 2 - Swords to City Centre

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	7
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	6
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	6
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	5
SOIL	Undrained shear strength – triaxial compression with multistage loading and without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377-7: 1990: Cl 9	2
ROCK	Point load index	ISRM Commission on Testing Methods. Suggested Method for Determining Point Load Strength 1985	4
ROCK	Uniaxial Compressive Strength (UCS)*	ISRM Suggested Methods -Rock Characterization Testing and Monitoring, Ed. E T Brown - 1981	2

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	BRE Test – Suite A		3

Summary of Classification Test Results

Project No.

Project Name

20-0399A

Bus Connects Route 2 - Swords to City Centre

		Sar	nple			Density		W	Passing	LL	PL	ΡI	Particle	0
Hole No.	Ref	Тор	Base	Туре	Soil Description		dry		425µm				density	Casagrande Classification
		- '		71 -		Mg/m	3	%	%	%	%	%	Mg/m3	
R2-CPRC02	13	4.00		D	Grey sandy gravelly silty CLAY.			10.0	63	28 -1pt	13	15		CL
R2-CPRC02	15	5.50		D	Grey sandy gravelly silty CLAY.			9.4	76	32 -1pt	15	17		CL
R2-CPRC02	15	6.50		С	Grey sandy gravelly silty CLAY.			8.2	50	24 -1pt	15	9		CL
R2-CPRC02	15	9.50		С	Grey sandy gravelly silty CLAY.			5.8	43	24 -1pt	16	8		CL
R2-CPRC02	15	12.50		С	Grey sandy gravelly silty CLAY.			7.1	52	24 -1pt	15	9		CL
R2-TP01	3	1.00		В	Brown gravelly slightly clayey fine to coarse SAND.			11.0						
R2-TP02	4	1.00		В	Brown gravelly silty fine to coarse SAND.			13.0	50	42 -1pt	25	17		CI
İ														

All tests performed in accordance with BS1377:1990 unless specified otherwise

LAB 01R Version 4

Key

Density test

Liquid Limit

Particle density

Date Printed

Approved By

Linear measurement unless :

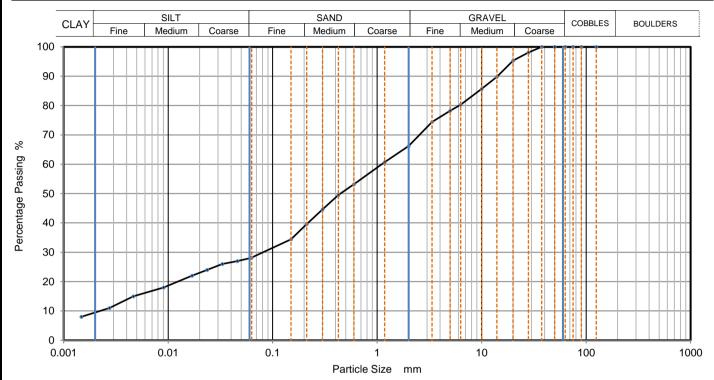
4pt cone unless:

1pt - single point test

sp - small pyknometer

23/11/2020

wd - water displacement wi - immersion in water


cas - Casagrande method

gj - gas jar

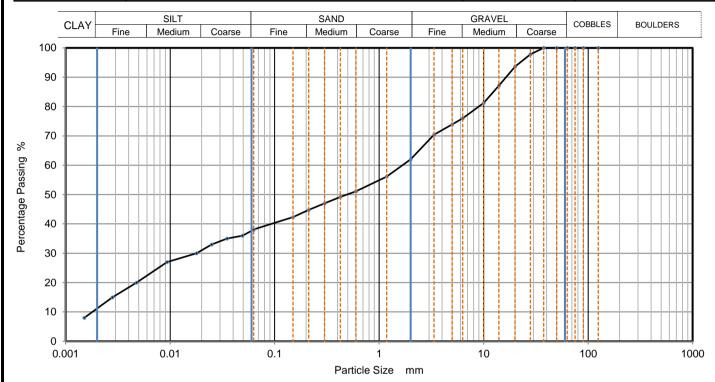
Stephen.Watson

CAUSEWAY	DART	CLE SIZE DIST	PIRITION		Job Ref	20-0399A
—— GEOTECH	PANII	CLE SIZE DIST	KIBUTION	Borehole/Pit No.	R2-CPRC02	
Site Name	Bus Connects Route 2	- Swords to City C	entre		Sample No.	6
Soil Description	Grey sandy gravelly silty	CLAY.		Depth, m	2.00	
Specimen Reference	ce 3 Specimen 2 m		m	Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	ses 9.2 and 9.5		·	KeyLAB ID	Caus2020110331

Siev	/ing	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100	0.06126	28				
90	100	0.04590	27				
75	100	0.03294	26				
63	100	0.02362	24				
50	100	0.01694	22				
37.5	100	0.00904	18				
28	98	0.00464	15				
20	95	0.00274	11				
14	90	0.00148	8				
10	86						
6.3	80						
5	78						
3.35	74						
2	66						
1.18	61						
0.6	53	Particle density	(assumed)				
0.425	50	2.65	Mg/m3				
0.3	45						
0.212	40						
0.15	34]					
0.063	28						

Dry Mass of sample, g	2384
-----------------------	------

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	33.8		
Sand	38.0		
Silt	18.8		
Clay	9.4		


Grading Analysis		
D100	mm	
D60	mm	1.1
D30	mm	0.0809
D10	mm	0.00224
Uniformity Coefficient		490
Curvature Coefficient		2.6

Preparation and testing in accordance with BS1377-2:1990 unless noted below

Approved	
Stephen.Watson	

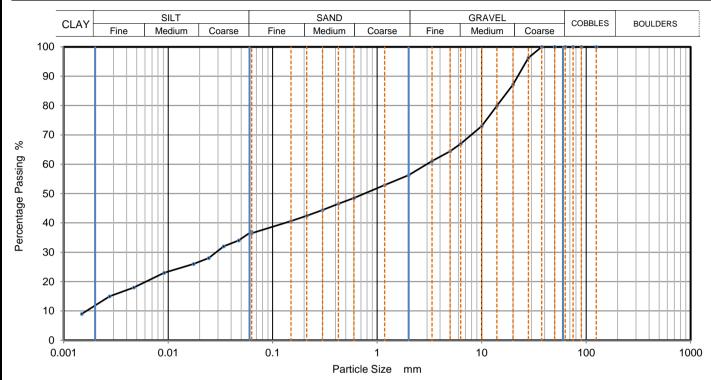
CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	20-0399A		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	R2-CPRC02	
Site Name	Bus Connects Route 2	Bus Connects Route 2 - Swords to City Centre			Sample No.	12
Soil Description	Grey sandy gravelly silty CLAY.			Depth, m	4.00	
Specimen Reference	3 Specimen 4 m Depth			Sample Type	В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2020110332	

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	38
90	100	0.04921	36
75	100	0.03502	35
63	100	0.02492	33
50	100	0.01784	30
37.5	100	0.00933	27
28	98	0.00477	20
20	94	0.00280	15
14	87	0.00151	8
10	81		
6.3	76		
5	74		
3.35	70		
2	62		
1.18	56		
0.6	51	Particle density	(assumed)
0.425	49	2.65	Mg/m3
0.3	47		
0.212	45	1	
0.15	42	1	
0.063	38		

Dry Mass of sample, g	2329

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	38.0		
Sand	23.9		
Silt	26.8		
Clay	11.3		

Grading Analysis		
D100	mm	
D60	mm	1.67
D30	mm	0.0182
D10	mm	0.00177
Uniformity Coefficient		940
Curvature Coefficient		0.11


Preparation and testing in accordance with BS1377-2:1990 unless noted below

Approved

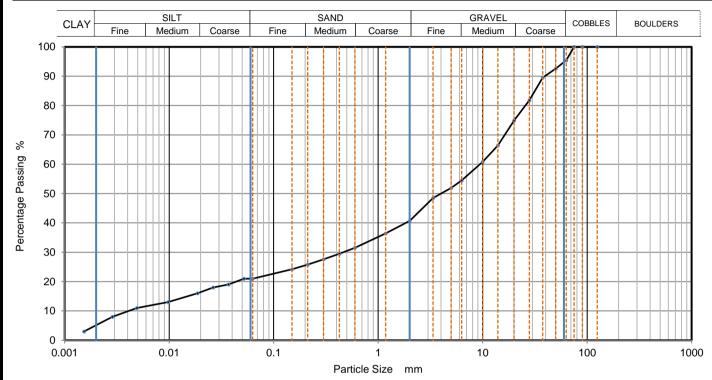
Stephen.Watson

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	20-0399A			
—— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	R2-CPRC02	
Site Name	Bus Connects Route 2	Bus Connects Route 2 - Swords to City Centre			Sample No.	15
Soil Description	Grey sandy gravelly silty CLAY.			Depth, m	6.50	
Specimen Reference	7 Specimen 6.5 m			Sample Type	С	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2020110336	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.06264	37	
90	100	0.04725	34	
75	100	0.03388	32	
63	100	0.02444	28	
50	100	0.01751	26	
37.5	100	0.00916	23	
28	96	0.00469	18	
20	87	0.00275	15	
14	80	0.00149	9	
10	73			
6.3	67			
5	64			
3.35	61			
2	56			
1.18	53			
0.6	49	Particle density	(assumed)	
0.425	47	2.65	Mg/m3	
0.3	44			
0.212	42			
0.15	41			
0.063	37			

Sample Proportions	% dry mass		
Cobbles	0.0		
Gravel	43.7		
Sand	19.8		
Silt	24.8		
Clay	11.7		

Grading Analysis		
D100	mm	
D60	mm	2.99
D30	mm	0.0293
D10	mm	0.00171
Uniformity Coefficient		1700
Curvature Coefficient		0.17


Preparation and testing in accordance with BS1377-2:1990 unless noted below

Approved

Stephen.Watson

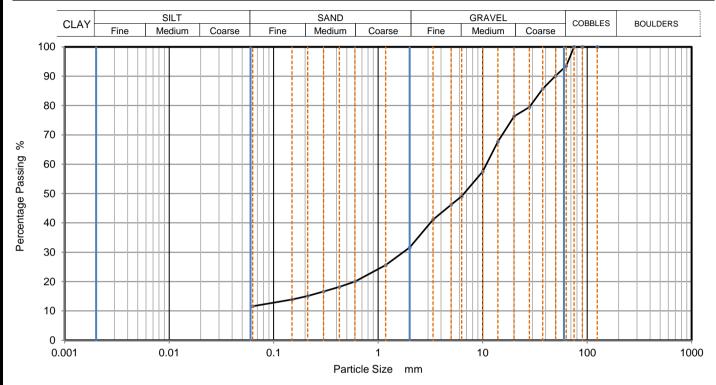
CAUSEWAY PARTICLE SIZE DISTRIBUTION			Job Ref	20-0399A		
——— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	R2-SLT01
Site Name	Bus Connects Route 2	Bus Connects Route 2 - Swords to City Centre			Sample No.	4
Soil Description	Grey sandy gravelly silty CLAY.			Depth, m	1.00	
Specimen Reference	3 Specimen 1 m			Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5				KeyLAB ID	Caus2020110341

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	21
90	100	0.05201	21
75	100	0.03699	19
63	95	0.02630	18
50	93	0.01870	16
37.5	90	0.00977	13
28	82	0.00491	11
20	75	0.00287	8
14	66	0.00153	3
10	61		
6.3	55		
5	52		
3.35	49		
2	41		
1.18	36		
0.6	32	Particle density	(assumed)
0.425	30	2.65	Mg/m3
0.3	28		
0.212	26		
0.15	24]	
0.063	21]	

Dry Mass of sample, g	7415

Sample Proportions	% dry mass
Cobbles	4.6
Gravel	54.7
Sand	19.7
Silt	15.7
Clay	5.3

Grading Analysis		
D100	mm	
D60	mm	9.4
D30	mm	0.464
D10	mm	0.00395
Uniformity Coefficient		2400
Curvature Coefficient		5.8


Preparation and testing in accordance with BS1377-2:1990 unless noted below

Approved

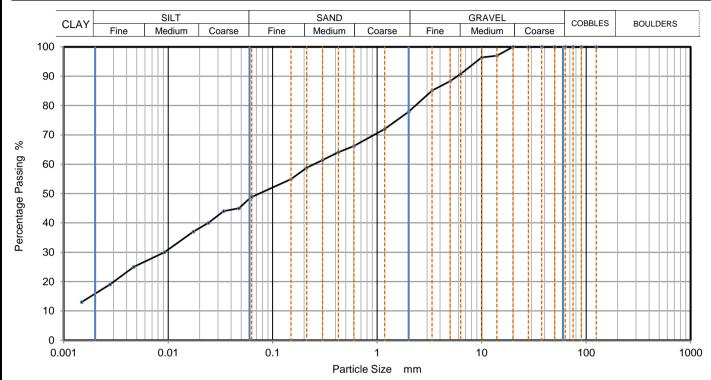
Stephen.Watson

CAUSEWAY PARTICLE SIZE DISTRIBUTION -			Job Ref	20-0399A	
—— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	R2-TP01
Site Name	Bus Connects Route 2	Bus Connects Route 2 - Swords to City Centre			3
Soil Description	Brown gravelly slightly clayey fine to coarse SAND.			Depth, m	1.00
Specimen Reference	5 Specimen 1 m			Sample Type	В
Test Method	thod BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2020110342

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	94		
50	90		
37.5	86		
28	80		
20	76		
14	68		
10	58		
6.3	49		
5	46		
3.35	41		
2	32		
1.18	26		
0.6	20		
0.425	18]	
0.3	17		
0.212	15		
0.15	14]	
0.063	12		

Dry Mass of sample, g 7960	
----------------------------	--

Sample Proportions	% dry mass
Cobbles	6.5
Gravel	61.9
Sand	20.0
Fines < 0.063mm	12.0


Grading Analysis		
D100	mm	
D60	mm	10.9
D30	mm	1.73
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377-2:1990 unless noted below

Approved
Stephen.Watson

CAUSEWAY PARTICLE SIZE DISTRIBUTION			Job Ref	20-0399A		
GEOTECH	PARI	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	R2-TP02
Site Name	Bus Connects Route 2	us Connects Route 2 - Swords to City Centre			Sample No.	5
Soil Description	Brown sandy gravelly silty CLAY.			Depth, m	2.00	
Specimen Reference	3 Specimen 2 m			Sample Type	В	
Test Method	<u>'</u>			·	KeyLAB ID	Caus2020110344

Sievi	ng	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	49
90	100	0.04758	45
75	100	0.03388	44
63	100	0.02428	40
50	100	0.01740	37
37.5	100	0.00921	30
28	100	0.00469	25
20	100	0.00277	19
14	97	0.00148	13
10	96		
6.3	91		
5	88		
3.35	85		
2	78		
1.18	72		
0.6	66	Particle density	(assumed)
0.425	64	2.65	Mg/m3
0.3	61		
0.212	59		
0.15	55	1	
0.063	49		

Dry Mass of sample, g	508

Sample Proportions	% dry mass
Cobbles	0.0
Gravel	22.1
Sand	29.1
Silt	32.9
Clay	15.9

Grading Analysis		
D100	mm	
D60	mm	0.249
D30	mm	0.00886
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377-2:1990 unless noted below

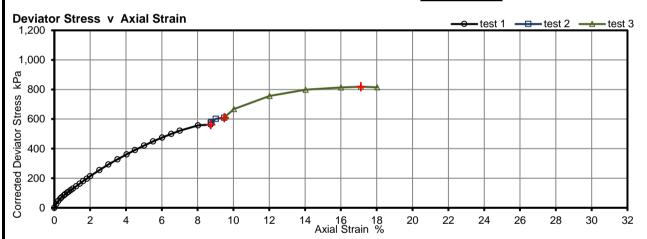
Approved

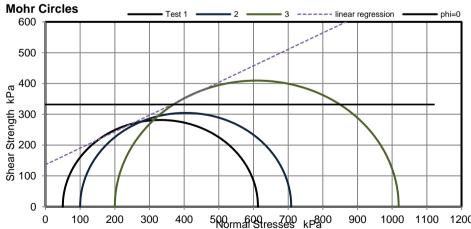
Stephen.Watson

CAUSEWAY	Unconsolidate		ed Triaxial ut measurement	Job Ref	20-0399A	
—— GEOTECH	of pore pressu			Borehole/Pit No.	R2-CPRC02	
Site Name	Bus Connects Route	2 - Swords to C	ity Centre	Sample No.	19	
Soil Description	Grey sandy gravelly	silty CLAY.		Depth	5.00	
Specimen Reference	6	Specimen Depth	5.05 m	Sample Type	U	
Specimen Description	Hard grey sandy grav	velly silty CLAY.		KeyLAB ID	Caus2020110334	
Test Method	BS1377:Part 7:1990,	clause 9, multis	tage test on a single spe	Date of test	10/11/2020	

Length Diameter **Bulk Density** Moisture Content Dry Density

210.0 mm 104.2 mm Mg/m3 2.20 % 10.1 2.00 Mg/m3


Rate of Strain Stage Number Cell Pressure End of stage


Axial Strain

Deviator Stress, ($\sigma 1$ - $\sigma 3$) corrected for area and membrane

Shear strength, cu Mode of failure

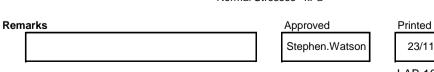
%/min	1.00		
	1	2	3
kPa	50	100	200
%	8.7	9.5	17.1
kPa	563.0	608.9	818.8
kPa	281.5	304.4	409.4
	Compound		

φu = 0

Average cu

332 kPa

Linear Regression


φu

28.1 °

cu 136 kPa

Mohr circles and their interpretation is not covered by BS1377-7: 1990. These are provided for information

only.

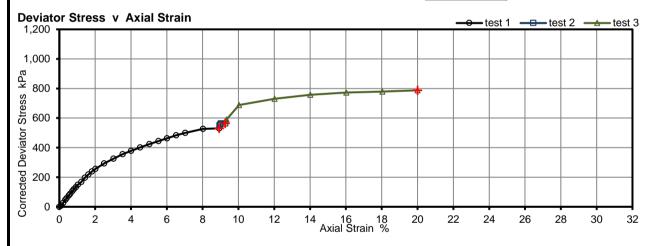
23/11/2020 16:46

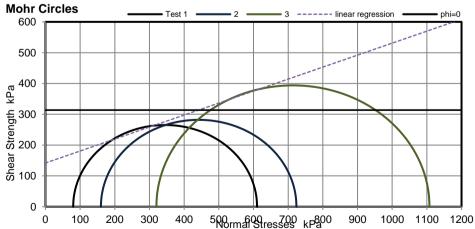
LAB 16R Version 4

CAUSEWAY	Unconsolidate		ed Triaxial ut measurement	Job Ref	20-0399A	
—— GEOTECH	of pore pressu			Borehole/Pit No.	R2-CPRC02	
Site Name	Bus Connects Route	2 - Swords to Ci	ty Centre	Sample No.	15	
Soil Description	Grey sandy gravelly	silty CLAY.		Depth	8.00	
Specimen Reference	3	Specimen Depth	8.05 m	Sample Type	С	
Specimen Description	Hard grey sandy grav	velly silty CLAY.		KeyLAB ID	Caus2020110337	
Test Method	BS1377:Part 7:1990,	clause 9, multis	tage test on a single sp	Date of test	10/11/2020	

Length
Diameter
Bulk Density
Moisture Content
Dry Density

mm 209.0 mm 104.5 Mg/m3 2.37 % 7.3 Mg/m3 2.21


Rate of Strain Stage Number Cell Pressure


End of stage Axial Strain

Deviator Stress, ($\sigma 1$ - $\sigma 3$) corrected for area and membrane

Shear strength, cu Mode of failure

%/min	1.00		
	1	2	3
kPa	80	160	320
%	8.9	9.3	20.0
kPa	530.3	563.9	787.6
kPa	265.2	281.9	393.8

φu = 0

Average cu 314 kPa

Linear Regression

φu 21.3 °

cu 142 kPa

Mohr circles and their interpretation is not covered by BS1377-7: 1990. These are provided for information

only.

No failure defined. Testing terminated at 20% axial strain.

Approved

Stephen.Watson

Printed

23/11/2020 16:46

LAB 16R Version 4

· C	AUSEW	AY		Point Load Strength Index Tests Summary of Results														
Project No.)-0399A			Proje	Project Name Bus Connects Route 2 - Swords to City Centre													
Borehole	Sample Specimen			Test	T		Dimensions			Force	Equivalent diameter, De	Point Load Strength Index		Remarks (including				
No.	Depth	Ref.	Туре	Ref.	Depth	Rock Type	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps mm	Dps'	kN	a Equivale	Is MPa	Is(5 0) _{MPa}	water content if measured)
R2-CPRC02	14.90		С	1	m 14.90	LIMESTONE	D	U	YES				97.0	10.3	99.1	1.0	1.4	
R2-CPRC02	15.40		С	2	15.40	LIMESTONE	Α	U	NO		101.3	40.0	37.0	12.6	69.1	2.6	3.1	
R2-CPRC02	17.10		С	3	17.10	LIMESTONE	А	U	NO		101.3	86.0	81.0	18.6	102.2	1.8	2.5	
R2-CPRC02	18.20		С	4	18.20	LIMESTONE	D	U	YES	96.1	101.4	101.4	96.0	21.3	98.7	2.2	3.0	
Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U- unknown or random Dimensions Dps - Distance between platens (platen separation) Dps' - at failure (see ISRM note 6) Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P								D _{ps}										
											Date F	Printed		Appro	ved B	у		ÇÎ
Detailed legend for	Test performed in accordance with ISRM Suggested Methods: 2007, unless noted otherwise Detailed legend for test and dimensions, based on ISRM, is shown above. Size factor, F = (De/50)0.45 for all tests. LAB 17R Version 4 Stephen Watson									UKAS TESTING								

UNIAXIAL COMPRESSION TEST ON ROCK - SUMMARY OF RESULTS

Project No.

Project Name

20-0399A

Bus Connects Route 2 - Swords to City Centre

		Sar	nple			Dii	Specime mensior	n ns²	Bulk	Water	Uniaxial Compression ³			
Hole No.	Ref	Тор	Base	Туре	Rock Type	Dia. mm	Length mm	H/D	Density ² Mg/m ³	Content ¹ %	Condition	Mode of failure	UCS MPa	Remarks
R2-CPRC02		16.55	16.80	С	LIMESTONE	101.2	255.3	2.5	2.70	0.3	as received	S	21.7	
R2-CPRC02		19.10	19.85	С	LIMESTONE	101.3	255.6	2.5	2.70	0.2	as received	F	18.5	

- 2 ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density
- 3 ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials

above notes apply unless annotated otherwise in the remarks

S - Single shear

MS - multiple shear

AC - Axial cleavage

F - Fragmented

above notes apply among annotation of the name				
Test Specification	Date Printed	Approved By	Table	
International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007	23/11/2020			1
			sheet	
		Stephen.Watson		1

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-30599-1

Initial Date of Issue: 17-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey
Stephen McCracken
Stephen Watson
Stuart Abraham
Thomas McAllis

Project 20-0399A Bus Connects Route 2

Swords to City Centre

Quotation No.: Date Received: 11-Nov-2020

Order No.: Date Instructed: 11-Nov-2020

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 17-Nov-2020

Date Approved: 17-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 20-0399A Bus Connects Route 2 Swords to City Centre

Client: Causeway Geotech Ltd		Che	ntest Jo	ob No.:	20-30599	20-30599	20-30599
Quotation No.:	(Chemte	st Sam	ple ID.:	1095060	1095061	1095062
Order No.:		Clie	nt Samp	le Ref.:	16	18	
	Sample Location: F				R2-CPRC02	R2-CPRC02	R2-CPRC02
			Sampl	е Туре:	SOIL	SOIL	SOIL
	Top Depth (m):				5.00	6.00	11.00
			Date Sa	ampled:	09-Nov-2020	09-Nov-2020	09-Nov-2020
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	12	11	8.8
pH (2.5:1)	N	2010		4.0	8.6	8.5	8.3
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.031	< 0.010	0.048

Test Methods

SOP	Title	Parameters included	Method summary	
2010	pH Value of Soils	рН	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

LABORATORY RESTRICTION REPORT

Projec	ct Referenc	се	20-0399A			То	Sean Ross
Pro	ject Name		Bus	us Connects Route 9 - Swords to City Centre		Position	Project Manager
TR	reference	+		20-0399A	/ G01	From	Joseph Nicholl
						Position	Laboratory Quality Manage
	ring sample(s e laboratory.		s) are res	stricted as detailed bel	low. Could you please complete the	Required Action	column and return the completed
Hole		Sample		Test	Reason for Restrict		De militard Antique
Number	Number	Depth (m)	Туре	Туре	Reason for Restriction		Required Action
R2CP RC02	19	5.00	U	Oedometer	Unable to obtain specime - coarse gravel content t		CANCEL
R2CP RC02	15	11.00	U	UU Triaxial Oedometer	Unable to obtain specimen for test - coarse gravel content too high		CANCEL
			+				
			\sqcup				
			H				
	ronic repor				Laboratory Signatu Joseph Nicholl		Project Manager Signature Sean Ross
electronic signature or printed name is				is	Data		Data

Date

13 November 2020

Date

Printed on: 23/11/2020

acceptable

APPENDIX I ENVIRONMENTAL LABORATORY TEST RESULTS

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-25513-1

Initial Date of Issue: 02-Oct-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross

Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAllis

Project 20-0399a Bus Connects

Quotation No.: Q20-21063 Date Received: 23-Sep-2020

Order No.: Date Instructed: 28-Sep-2020

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 02-Oct-2020

Date Approved: 02-Oct-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 20-0399a Bus Connects

Client: Causeway Geotech Ltd	Chemtest Job No.:		20-25513	20-25513	20-25513		
Quotation No.: Q20-21063	(st Sam		1068885	1068886	1068888
		Sample Location:		R2-TP01	R2-TP01	R2-TP02	
	Sample Type:		SOIL	SOIL	SOIL		
			Top Dep	oth (m):	0.5	1	0.5
			Date Sa	ampled:	22-Sep-2020	22-Sep-2020	22-Sep-2020
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	ı	ı	1
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-
Moisture	N	2030	%	0.020	9.4	10	9.4
pН	М	2010		4.0	9.2	8.7	8.2
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.75	0.79	< 0.40
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.39	0.15	0.59
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Arsenic	М	2450	mg/kg	1.0	19	19	19
Cadmium	М	2450	mg/kg	0.10	0.66	1.7	1.7
Chromium	М	2450	mg/kg	1.0	11	14	13
Copper	М	2450	mg/kg	0.50	21	26	24
Mercury	М	2450	mg/kg	0.10	0.11	0.10	< 0.10
Nickel	M	2450	mg/kg	0.50	21	39	39
Lead	М	2450	mg/kg	0.50	60	44	22
Zinc	М	2450	mg/kg	0.50	77	63	56
Organic Matter	М	2625	%	0.40	1.4	1.9	1.1
Total TPH >C6-C40	М	2670	mg/kg	10	260	< 10	< 10
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	2.2	< 0.10	< 0.10
Pyrene	М	2700	mg/kg	0.10	3.4	< 0.10	< 0.10
Benzo[a]anthracene	М	2700	mg/kg	0.10	1.4	< 0.10	< 0.10
Chrysene	М	2700	mg/kg	0.10	1.6	< 0.10	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	1.7	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	0.52	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.10	1.4	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	0.82	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	0.15	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	1.2	< 0.10	< 0.10
Coronene	N	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2700	mg/kg	2.0	14	< 2.0	< 2.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30

Results - Single Stage WAC

Project: 20-0399a Bus Connects

Project: 20-0399a Bus Connects							
Chemtest Job No:	20-25513			Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1068886				Limits		
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	R2-TP01					hazardous	Hazardous
Top Depth(m):	1				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Sep-2020					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	1.1	3	5	6
Loss on Ignition							10
Total BTEX	2760	M	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	M	mg/kg	< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg	< 2.0	100		
pH						>6	
Acid Neutralisation Capacity						To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25
Barium	1450	U	0.020	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70
Copper	1450	U	0.0017	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0066	0.066	0.5	10	30
Nickel	1450	U	0.0014	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7
Zinc	1450	U	< 0.0010	< 0.50	4	50	200
Chloride	1220	U	1.7	17	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	27	270	1000	20000	50000
Total Dissolved Solids	1020	N	170	1700	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	7.0	70	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	10					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 20-0399a Bus Connects

Project: 20-0399a Bus Connects								
Chemtest Job No:	20-25513				LandfIII Waste Acceptance Criteria			
Chemtest Sample ID:	1068888					Limits		
Sample Ref:						Stable, Non-		
Sample ID:						reactive		
Sample Location:	R2-TP02					hazardous	Hazardous	
Top Depth(m):	0.5				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:	22-Sep-2020					Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	М	%	0.64	3	5	6	
Loss on Ignition							10	
Total BTEX	2760	М	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1			
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	< 10	500			
Total (Of 17) PAH's	2700	N	mg/kg	< 2.0	100			
рН						>6		
Acid Neutralisation Capacity						To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg	
Arsenic	1450	U	< 0.0010	< 0.050	0.5	2	25	
Barium	1450	U	0.021	< 0.50	20	100	300	
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5	
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70	
Copper	1450	U	0.0011	< 0.050	2	50	100	
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2	
Molybdenum	1450	U	0.011	0.11	0.5	10	30	
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40	
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50	
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5	
Selenium	1450	U	0.0057	0.057	0.1	0.5	7	
Zinc	1450	U	0.0078	< 0.50	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.23	2.3	10	150	500	
Sulphate	1220	U	100	1000	1000	20000	50000	
Total Dissolved Solids	1020	N	230	2300	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1		-	
Dissolved Organic Carbon	1610	U	4.1	< 50	500	800	1000	

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	9.4					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
		· · · · · · · · · · · · · · · · · · ·	-

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-29441-1

Initial Date of Issue: 09-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop

Sean Ross
Stephen Franey
Stephen McCracken
Stephen Watson
Stuart Abraham
Thomas McAllis

Project 20-0399A Bus Connects Route 2

Quotation No.: Q20-21063 Date Received: 30-Oct-2020

Order No.: Date Instructed: 03-Nov-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 09-Nov-2020

Date Approved: 09-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road . Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Results - Soil

Project: 20-0399A Bus Connects Route 2

Client: Causeway Geotech Ltd		Che	mtest Jo	ob No.:	20-29441	20-29441
Quotation No.: Q20-21063	(Chemte	st Sam	ple ID.:	1089266	1089268
		Sample Location:				R2CPRC02
			Sample	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	1.00	3.00
			Date Sa	ampled:	26-Oct-2020	26-Oct-2020
			Asbest	os Lab:	LIVERPOOL	LIVERPOOL
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	Ē	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	5.5	9.6
рН	М	2010		4.0	8.7	8.6
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.67	0.66
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.021	0.18
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	0.50
Arsenic	М	2450	mg/kg	1.0	23	25
Cadmium	М	2450	mg/kg	0.10	1.1	1.0
Chromium	М	2450	mg/kg	1.0	18	11
Copper	М	2450	mg/kg	0.50	50	35
Mercury	М	2450	mg/kg	0.10	0.46	1.1
Nickel	М	2450	mg/kg	0.50	34	27
Lead	М	2450	mg/kg	0.50	440	180
Zinc	М	2450	mg/kg	0.50	120	80
Organic Matter	М	2625	%	0.40	3.3	4.0
Total TPH >C6-C40	М	2670	mg/kg	10	60	< 10
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	M	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	M	2700	mg/kg	0.10	1.0	< 0.10
Anthracene	M	2700	mg/kg	0.10	0.39	< 0.10
Fluoranthene	М	2700	mg/kg	0.10	3.2	0.60
Pyrene	М	2700	mg/kg	0.10	3.6	0.64
Benzo[a]anthracene	M	2700	mg/kg	0.10	2.0	< 0.10
Chrysene	М	2700	mg/kg	0.10	1.9	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	4.0	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	1.4	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.10	3.3	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	2.3	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	1.1	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	2.6	< 0.10
Coronene	N	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2700	mg/kg	2.0	27	< 2.0
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30

Results - Single Stage WAC

Project: 20-0399A Bus Connects Route 2

Chemtest Job No:	20-29441				l andfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1089266				Limits			
Sample Ref:	1000200					Stable, Non-		
Sample ID:						reactive		
Sample Location:	R2CPRC02					hazardous	Hazardous	
Top Depth(m):	1.00				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:	26-Oct-2020	26-Oct-2020				Landfill	24.14	
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	М	%	1.9	3	5	6	
Loss on Ignition				-			10	
Total BTEX	2760	М	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1			
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	60	500			
Total (Of 17) PAH's	2700	N	mg/kg	27	100			
pH						>6		
Acid Neutralisation Capacity						To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
•			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg	
Arsenic	1450	U	0.0034	< 0.050	0.5	2	25	
Barium	1450	U	0.012	< 0.50	20	100	300	
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5	
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70	
Copper	1450	U	0.0044	< 0.050	2	50	100	
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2	
Molybdenum	1450	U	0.0081	0.081	0.5	10	30	
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40	
Lead	1450	U	0.0018	0.018	0.5	10	50	
Antimony	1450	U	0.0013	0.013	0.06	0.7	5	
Selenium	1450	U	0.0025	0.025	0.1	0.5	7	
Zinc	1450	U	0.0034	< 0.50	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.33	3.3	10	150	500	
Sulphate	1220	U	7.3	73	1000	20000	50000	
Total Dissolved Solids	1020	N	72	720	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	24	240	500	800	1000	

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	5.5					

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
		· · · · · · · · · · · · · · · · · · ·	-

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-31961-1

Initial Date of Issue: 30-Nov-2020

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Martin Gardiner
Matthew Gilbert
Neil Haggan
Paul Dunlop
Sean Ross
Stephen Franey

Stephen Franey
Stephen McCracken
Stephen Watson
Stuart Abraham
Thomas McAllis

Project 20-0399A Bus Connects Route 2

Quotation No.: Q20-21063 Date Received: 24-Nov-2020

Order No.: Date Instructed: 26-Nov-2020

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 02-Dec-2020

Date Approved: 30-Nov-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Results - Water

Project: 20-0399A Bus Connects Route 2

Client: Causeway Geotech Ltd		Chemtest Job No.:					
Quotation No.: Q20-21063	(Chemtest Sample ID					
		S	ample Lo	ocation:	R2-CPRC02		
		Sample Type					
			Date Sa	ampled:	19-Nov-2020		
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	7.7		
Electrical Conductivity	U	1020	μS/cm	1.0	840		
Ammonia (Free) as N	U	1220	mg/l	0.050	0.19		
Nitrite as N	U	1220	mg/l	0.010	< 0.010		
Nitrate as N	U	1220	mg/l	0.50	< 0.50		
Phosphorus (Total)	N	1220	mg/l	0.020	< 0.020		
Phosphate as P	U	1220	mg/l	0.050	< 0.050		
Nitrogen (Total)	N	1340	mg/l	5.0	6.6		
Calcium	U	1415	mg/l	5.0	62		
Magnesium	U	1415	mg/l	0.50	22		
Sodium	U	1415	mg/l	0.50	91		
Total Hardness as CaCO3	U	1270	mg/l	15	250		
Arsenic (Dissolved)	U	1450	μg/l	1.0	1.0		
Boron (Dissolved)	U	1450	μg/l	20	120		
Barium (Dissolved)	U	1450	μg/l	5.0	85		
Cadmium (Dissolved)	U	1450	μg/l	0.080	< 0.080		
Copper (Dissolved)	U	1450	μg/l	1.0	< 1.0		
Iron (Dissolved)	N	1450	μg/l	20	120		
Mercury (Dissolved)	U	1450	μg/l	0.50	2.0		
Manganese (Dissolved)	U	1450	μg/l	1.0	53		
Molybdenum (Dissolved)	U	1450	μg/l	1.0	13		
Nickel (Dissolved)	U	1450	μg/l	1.0	6.1		
Lead (Dissolved)	U	1450	μg/l	1.0	< 1.0		
Antimony (Dissolved)	U	1450	μg/l	1.0	2.8		
Selenium (Dissolved)	U	1450	μg/l	1.0	3.0		
Zinc (Dissolved)	U	1450	μg/l	1.0	9.6		
Chromium (Trivalent)	N	1490	μg/l	20	[B] < 20		
Chromium (Hexavalent)	U	1490	μg/l	20	[B] < 20		
Total Organic Carbon	U	1610	mg/l	2.0	< 2.0		
Mineral Oil	N	1670	μg/l	10	< 10		
Total TPH >C6-C40	U	1670	μg/l	10	< 10		
Naphthalene	U	1800	μg/l	0.10	< 0.10		
Acenaphthylene	U	1800	μg/l	0.10	< 0.10		
Acenaphthene	U	1800	μg/l	0.10	< 0.10		
Fluorene	U	1800	μg/l	0.10	< 0.10		
Phenanthrene	U	1800	μg/l	0.10	< 0.10		
Anthracene	U	1800	μg/l	0.10	< 0.10		
Fluoranthene	U	1800	μg/l	0.10	< 0.10		
Pyrene	U	1800	μg/l	0.10	< 0.10		
Benzo[a]anthracene	U	1800	μg/l	0.10	< 0.10		
Chrysene	U	1800	μg/l	0.10	< 0.10		

Results - Water

Project: 20-0399A Bus Connects Route 2

Client: Causeway Geotech Ltd		Chemtest Job No.:				
Quotation No.: Q20-21063		Chemtest Sample ID.:				
		S	ample Lo	ocation:	R2-CPRC02	
			Sample	е Туре:	WATER	
		Date Sampled:				
Determinand	Accred.	Accred. SOP Units LOD				
Benzo[b]fluoranthene	U	1800	μg/l	0.10	< 0.10	
Benzo[k]fluoranthene	U	1800	μg/l	0.10	< 0.10	
Benzo[a]pyrene	U	1800	μg/l	0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	1800	μg/l	0.10	< 0.10	
Dibenz(a,h)Anthracene	U	1800	μg/l	0.10	< 0.10	
Benzo[g,h,i]perylene	U	1800	μg/l	0.10	< 0.10	
Total Of 16 PAH's	U	1800	μg/l	2.0	< 2.0	

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1101778			R2-CPRC02	19-Nov-2020	В	Coloured Winchester 1000ml
1101778			R2-CPRC02	19-Nov-2020	В	EPA Vial 40ml
1101778			R2-CPRC02	19-Nov-2020	В	Plastic Bottle 1000ml

Test Methods

SOP	Title	Parameters included	Method summary	
1010	pH Value of Waters	рН	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg l-1 CaCO3 equivalent.	
1340	Total Nitrogen in Waters	Total Nitrogen and organic Nitrogen	Persulphate digestion followed by colorimetry.	
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).	
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1670	Total Petroleum Hydrocarbons (TPH) in Waters by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO	Pentane extraction / GC FID detection	
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX J SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing **Keeble House Stuart Way East Grinstead** West Sussex

RH19 4QA

SPT Hammer Ref:

,0208

Test Date:

22/02/2020

Report Date:

03/03/2020

File Name:

.0208.spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness tr (mm):

6.0

Assumed Modulus Ea (GPa): 200

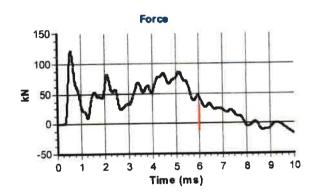
Accelerometer No.1:

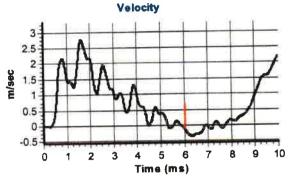
6458

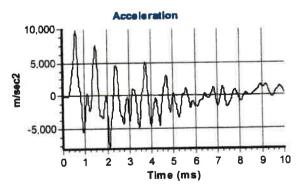
Accelerometer No.2:

9607

SPT Hammer Information


Hammer Mass m (kg):


Falling Height h (mm): 760


SPT String Length L (m): 10.0


Comments / Location

BALLEYMONEY

Calculations

Area of Rod A (mm2):

905

Theoretical Energy Etheor (J):

473

Measured Energy E_{meas} (J):

331

Energy Ratio E_r (%):

70

Neil Burrows Signed:

Title:

Field Operations Manager

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing Keeble House Stuart Way East Grinstead West Sussex SPT Hammer Ref: .0643

Test Date:

22/02/2020

Report Date:

03/03/2020

File Name:

.0643.spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

RH19 4QA

54

Wall Thickness t_r (mm):

6.0

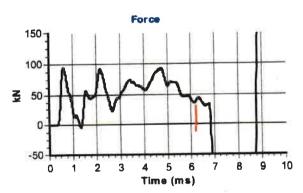
Assumed Modulus Ea (GPa): 200

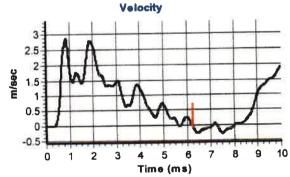
Falling Height h (mm): 760

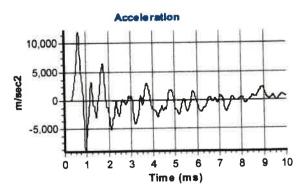
SPT String Length L (m): 10.0

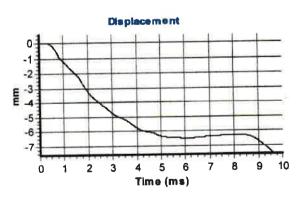
SPT Hammer Information

Hammer Mass m (kg): 63.5


Accelerometer No.1: Accelerometer No.2:


6458


9607


Comments / Location

BALLEYMONEY

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

400

Energy Ratio E, (%):

85

Signed: Neil Burrows

Title:

Field Operations Manager

The recommended calibration interval is 12 months